StatKons3: Demo

Veröffentlichungsdatum

20. November 2023

Einfaktorielle ANOVA

# für mehr infos
# https://stat.ethz.ch/R-manual/R-devel/library/datasets/html/mtcars.html

cars <- mtcars |>
  mutate(cyl = as.factor(cyl)) |>
  slice(-31) # lösch die 31ste Zeile

# Alternativ ginge auch das
cars[-31, ]

# schaue daten zuerst mal an
# 1. Responsevariable
hist(cars$hp) # nur sinnvoll bei grossem n
boxplot(cars$hp)

# 2. Responsevariable ~ Prediktorvariable
table(cars$cyl) # mögliches probel, da n's unterschiedlich gross

boxplot(cars$hp ~ cars$cyl) # varianzheterogentität weniger das problem,
# aber normalverteilung der residuen problematisch

# definiere das modell für eine ein-faktorielle anova
aov.1 <- aov(log10(hp) ~ cyl, data = cars)

# 3. Schaue Modelgüte an
par(mfrow = c(2, 2))
plot(aov.1)

# 4. Schaue output an und ordne es ein
summary.lm(aov.1)

# 5. bei meheren Kategorien wende einen post-hoc Vergleichstest an
TukeyHSD(aov.1)

# 6. Ergebnisse passend darstellen
library("multcomp")

# erstens die signifikanten Unterschiede mit Buchstaben versehen
letters <- multcomp::cld(multcomp::glht(aov.1, linfct = multcomp::mcp(cyl = "Tukey"))) # Achtung die kategoriale
# Variable (unsere unabhängige Variable "cyl") muss als Faktor
# definiert sein z.B. as.factor()

# einfachere Variante
boxplot(hp ~ cyl, data = cars)
mtext(letters$mcletters$Letters, at = 1:3)

# schönere Variante :)
ggplot(cars, aes(x = cyl, y = hp)) +
  stat_boxplot(geom = "errorbar", width = .5) +
  geom_boxplot(size = 1) +
  annotate("text", x = 1, y = 350, label = "a", size = 7) +
  annotate("text", x = 2, y = 350, label = "b", size = 7) +
  annotate("text", x = 3, y = 350, label = "c", size = 7) +
  labs(x = "\nAnzahl Zylinder", y = "Pferdestärke") +
  mytheme

# Plot exportieren
ggsave(
  filename = "statKons/distill-preview.png",
  device = "png"
) # hier kann man festlegen, was für ein Bildformat
# exportiert werden möchte

# Sind die Voraussetzungen für eine Anova verletzt, überprüfe alternative
# nicht-parametische Tests z.B. oneway-Test mit Welch-korrektur für ungleiche
# Varianzen (Achtung auch dieser Test hat Voraussetzungen -> siehe Skript XY)
library("rosetta")
welch1 <- oneway.test(hp ~ cyl, data = cars, var.equal = FALSE)
rosetta::posthocTGH(cars$hp, cars$cyl, method = "games-howell")

Mehrfaktorielle ANOVA

## 
## Call:
## aov(formula = hp ~ cyl * am + wt, data = cars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -33.834 -14.280  -7.418   7.120  60.282 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   32.743     31.636   1.035 0.310980    
## cyl6          22.556     20.859   1.081 0.290274    
## cyl8          88.818     20.463   4.340 0.000222 ***
## am            13.002     19.952   0.652 0.520811    
## wt            17.691      9.409   1.880 0.072272 .  
## cyl6:am       14.626     27.392   0.534 0.598276    
## cyl8:am       73.356     33.194   2.210 0.036894 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 26.73 on 24 degrees of freedom
## Multiple R-squared:  0.8428, Adjusted R-squared:  0.8035 
## F-statistic: 21.45 on 6 and 24 DF,  p-value: 1.511e-08

Einfache Regression

# inspiriert von Simon Jackson: http s://drsimonj.svbtle.com/visualising-residuals
cars <- mtcars |>
  # ändere die unabhängige Variable mpg in 100Km/L
  mutate(kml = (235.214583 / mpg)) # mehr Infos hier: https://www.asknumbers.com/mpg-to-L100km.aspx
# |>  # klone data set
# slice(-31) # # lösche Maserrati und schaue nochmals Modelfit an

#############
## 1.Daten anschauen
############

# Zusammenhang mal anschauen
# Achtung kml = 100km pro Liter
plot(hp ~ kml, data = cars)


# Responsevariable anschauen
boxplot(cars$hp)


# Korrelationen uv + av anschauen
# Reihenfolge spielt hier keine Rolle, wieso?
cor(cars$kml, cars$hp) # hängen stark zusammen
## [1] 0.7629477

###################
# 2. Modell definieren: einfache regression
##################
model <- lm(hp ~ kml, data = cars)
summary.lm(model)
## 
## Call:
## lm(formula = hp ~ kml, data = cars)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -75.22 -25.52 -13.31  30.92 148.69 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  -26.021     27.880  -0.933    0.358    
## kml           13.540      2.095   6.464 3.84e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 45.06 on 30 degrees of freedom
## Multiple R-squared:  0.5821, Adjusted R-squared:  0.5682 
## F-statistic: 41.79 on 1 and 30 DF,  p-value: 3.839e-07

###############
# 3.Modeldiagnostik und ggf. Anpassungen ans Modell oder ähnliches
###############

# semi schöne Ergebnisse
library("ggfortify")
ggplot2::autoplot(model) + mytheme # gitb einige Extremwerte => was tun? (Eingabe/Einlesen

# überprüfen, Transformation, Extremwerte nur ausschliessen mit guter Begründung)

# erzeuge vorhergesagte Werte und Residualwerte
cars$predicted <- predict(model) # bilde neue Variable mit geschätzten y-Werten
cars$residuals <- residuals(model)

# schaue es dir an, sieht man gut was die Residuen sind
d <- cars |>
  dplyr::select(hp, kml, predicted, residuals)

# schauen wir es uns an
head(d, 4)
##                 hp      kml predicted residuals
## Mazda RX4      110 11.20069  125.6411 -15.64107
## Mazda RX4 Wag  110 11.20069  125.6411 -15.64107
## Datsun 710      93 10.31643  113.6678 -20.66776
## Hornet 4 Drive 110 10.99134  122.8063 -12.80626

# visualisiere residuen
ggplot(d, aes(x = kml, y = hp)) +
  # verbinde beobachtete werte mit vorausgesagte werte
  geom_segment(aes(xend = kml, yend = predicted)) +
  geom_point() + # Plot the actual points
  geom_point(aes(y = predicted), shape = 4) + # plot geschätzten y-Werten
  # geom_line(aes(y = predicted), color = "lightgrey") # alternativ code
  geom_smooth(method = "lm", se = FALSE, color = "lightgrey") +
  # Farbe wird hier zu den redisuen gemapped, abs(residuals) wegen negativen zahlen
  geom_point(aes(color = abs(residuals))) +
  # Colors to use here (für mehrere farben verwende color_gradient2)
  scale_color_continuous(low = "blue", high = "red") +
  scale_x_continuous(limits = c(0, 40)) +
  scale_y_continuous(limits = c(0, 300)) +
  guides(color = "none") + # Color legende entfernen
  labs(x = "\nVerbraucht in Liter pro 100km", y = "Motorleistung in PS\n") +
  mytheme


##########
# 4. plotte Ergebnis
##########
ggplot(d, aes(x = kml, y = hp)) +
  geom_point(size = 4) +
  # geom_point(aes(y = predicted), shape = 1, size = 4) +
  # plot regression line
  geom_smooth(method = "lm", se = FALSE, color = "lightgrey") +
  # intercept
  geom_line(aes(y = mean(hp)), color = "blue") +
  mytheme

Multiple Regression

# Select data
cars <- mtcars |>
  slice(-31) |>
  mutate(kml = (235.214583 / mpg)) |>
  dplyr::select(kml, hp, wt, disp)

################
# 1. Multikollinearitüt überprüfen
# Korrelation zwischen Prädiktoren kleiner .7
cor <- cor(cars[, -2])
cor[abs(cor) < 0.7] <- 0
cor #
##            kml        wt      disp
## kml  1.0000000 0.8912658 0.8786238
## wt   0.8912658 1.0000000 0.8878515
## disp 0.8786238 0.8878515 1.0000000

##### info zu Variablen
# wt = gewicht
# disp = hubraum

###############
# 2. Responsevariable + Kriteriumsvariable anschauen
##############
# was würdet ihr tun?

############
# 3. Definiere das Model
############
model1 <- lm(hp ~ kml + wt + disp, data = cars)
model2 <- lm(hp ~ kml + wt, data = cars)
model3 <- lm(log10(hp) ~ kml + wt, data = cars)

#############
# 4. Modeldiagnostik
############

ggplot2::autoplot(model1)

ggplot2::autoplot(model2) # besser, immernoch nicht ok => transformation? vgl. model3

ggplot2::autoplot(model3)


############
# 5. Modellfit vorhersagen: wie gut sagt mein Modell meine Daten vorher
############

# es gibt 3 Mögliche Wege

# gebe dir predicted values aus für model2 (für vorzeigebeispiel einfacher :)
# gibts unterschidliche varianten die predicted values zu berechnen
# 1. default funktion predict(model) verwenden
cars$predicted <- predict(model2)

# 2. datensatz selber zusammenstellen (nicht empfohlen): wichtig, die
# prädiktoren müssen denselben
# namen haben wie im Model
# besser mit Traindata von Beginn an mehr Infos hier: https://www.r-bloggers.com/using-linear-regression-to-predict-energy-output-of-a-power-plant/

new.data <- tibble(
  kml = sample(seq(6.9384, 22.61, .3), 31),
  wt = sample(seq(1.513, 5.424, 0.01), 31),
  disp = sample(seq(71.1, 472.0, .1), 31)
)
cars$predicted_own <- predict(model2, newdata = new.data)

# 3. train_test_split durchführen (empfohlen) muss jedoch von beginn an bereits
# gemacht werden - Logik findet ihr hier: https://towardsdatascience.com/train-test-split-and-cross-validation-in-python-80b61beca4b6 oder https://towardsdatascience.com/6-amateur-mistakes-ive-made-working-with-train-test-splits-916fabb421bb
# beispiel hier: https://ijlyttle.github.io/model_cv_selection.html
cars <- mtcars |>
  mutate(id = row_number()) |> # für das mergen der Datensätze
  mutate(kml = (235.214583 / mpg)) |>
  dplyr::select(kml, hp, wt, disp, id)

train_data <- cars |>
  dplyr::sample_frac(.75) # für das Modellfitting

test_data <- dplyr::anti_join(cars, train_data, by = "id") # für den Test mit predict

# erstelle das Modell und "trainiere" es auf den train Datensatz
model2_train <- lm(hp ~ kml + wt, data = train_data)

# mit dem "neuen" Datensatz wird das Model überprüft ob guter Modelfit
train_data$predicted_test <- predict(model2_train, newdata = test_data)

# Residuen
train_data$residuals <- residuals(model2_train)
head(train_data)
##                           kml  hp    wt  disp id predicted_test residuals
## Lincoln Continental 22.616787 215 5.424 460.0 16      134.01817 -47.88455
## Merc 280C           13.214302 123 3.440 167.6 11      146.24464 -20.37192
## Fiat X1-9            8.615919  66 1.935  79.0 26      173.39854 -23.98304
## Merc 450SE          14.342353 180 4.070 275.8 12      171.45393  25.99904
## AMC Javelin         15.474644 150 3.435 304.0 23      125.36794 -26.66336
## Valiant             12.995281 105 3.460 225.0  6       94.37904 -34.96138

# weiterführende Infos zu "machine learning" Idee hier: https://stat-ata-asu.github.io/MachineLearningToolbox/regression-models-fitting-them-and-evaluating-their-performance.html
# wichtigstes Packet in dieser Hinsicht ist "caret": https://topepo.github.io/caret/
# beste Philosophie ist tidymodels: https://www.tidymodels.org

#----------------
# Schnelle variante mit broom
d <- lm(hp ~ kml + wt + disp, data = cars) |>
  broom::augment()

head(d)
## # A tibble: 6 × 11
##   .rownames            hp   kml    wt  disp .fitted .resid   .hat .sigma .cooksd
##   <chr>             <dbl> <dbl> <dbl> <dbl>   <dbl>  <dbl>  <dbl>  <dbl>   <dbl>
## 1 Mazda RX4           110  11.2  2.62   160    123. -12.7  0.0478   41.4 1.29e-3
## 2 Mazda RX4 Wag       110  11.2  2.88   160    114.  -4.21 0.0456   41.4 1.34e-4
## 3 Datsun 710           93  10.3  2.32   108    103.  -9.87 0.0758   41.4 1.31e-3
## 4 Hornet 4 Drive      110  11.0  3.22   258    142. -31.6  0.0958   41.0 1.77e-2
## 5 Hornet Sportabout   175  12.6  3.44   360    191. -16.3  0.210    41.3 1.35e-2
## 6 Valiant             105  13.0  3.46   225    138. -33.5  0.0445   40.9 8.22e-3
## # ℹ 1 more variable: .std.resid <dbl>

ggplot(d, aes(x = kml, y = hp)) +
  geom_segment(aes(xend = kml, yend = .fitted), alpha = .2) +
  geom_point(aes(color = .resid)) +
  scale_color_gradient2(low = "blue", mid = "white", high = "red") +
  guides(color = "none") +
  geom_point(aes(y = .fitted), shape = 4) +
  scale_y_continuous(limits = c(0, 350)) +
  geom_smooth(method = "lm", se = FALSE, color = "lightgrey") +
  mytheme


############
# 6. Modellvereinfachung
############

# Varianzpartitionierung
library("hier.part")
## Error in library("hier.part"): there is no package called 'hier.part'
cars <- mtcars |>
  mutate(kml = (235.214583 / mpg)) |>
  select(-mpg)

names(cars) # finde "position" deiner Responsevariable
##  [1] "cyl"  "disp" "hp"   "drat" "wt"   "qsec" "vs"   "am"   "gear" "carb"
## [11] "kml"

X = cars[, -3] # definiere all die Prädiktorvariablen im Model (minus Responsevar)

# dauert ein paar sekunden
hier.part(cars$hp, X, gof = "Rsqu")
## Error in hier.part(cars$hp, X, gof = "Rsqu"): could not find function "hier.part"

# alle Modelle miteinander vergleichen mit dredge Befehl: geht nur bis
# maximal 15 Variablen
model2 <- lm(hp ~ ., data = cars)
library("MuMIn")
options(na.action = "na.fail")
allmodels <- dredge(model2)
head(allmodels)
## Global model call: lm(formula = hp ~ ., data = cars)
## ---
## Model selection table 
##     (Intrc)  carb   cyl   disp   drat   kml   qsec    vs     wt df   logLik
## 523   53.17 23.58       0.5166                           -28.59  5 -145.394
## 779   42.55 25.02       0.5653                     11.94 -31.67  6 -145.015
## 527   38.82 22.53 4.368 0.4560                           -27.27  6 -145.126
## 539   90.56 24.30       0.5030 -8.159                    -30.75  6 -145.162
## 139  176.50 16.79       0.2999              -8.193               5 -146.709
## 587   48.91 22.98       0.4979        1.462              -31.20  6 -145.254
##      AICc delta weight
## 523 303.1  0.00  0.418
## 779 305.4  2.29  0.133
## 527 305.6  2.52  0.119
## 539 305.7  2.59  0.115
## 139 305.7  2.63  0.112
## 587 305.9  2.77  0.104
## Models ranked by AICc(x)

# Wichtigkeit der Prädiktoren
MuMIn::importance(allmodels)
## Error: 'importance' is defunct.
## Use 'sw' instead.
## See help("Defunct")

# mittleres Model
avgmodel <- MuMIn::model.avg(get.models(allmodels, subset = TRUE))
summary(avgmodel)
## 
## Call:
## model.avg(object = get.models(allmodels, subset = TRUE))
## 
## Component model call: 
## lm(formula = hp ~ <1024 unique rhs>, data = cars)
## 
## Component models: 
##                      df  logLik   AICc delta weight
## 2+4+10                5 -145.39 303.10  0.00   0.15
## 2+4+9+10              6 -145.02 305.39  2.29   0.05
## 2+3+4+10              6 -145.13 305.61  2.52   0.04
## 2+4+5+10              6 -145.16 305.68  2.59   0.04
## 2+4+8                 5 -146.71 305.73  2.63   0.04
## 2+4+7+10              6 -145.25 305.87  2.77   0.04
## 2+4+8+10              6 -145.33 306.02  2.92   0.04
## 1+2+4+10              6 -145.38 306.12  3.03   0.03
## 2+4+6+10              6 -145.39 306.14  3.04   0.03
## 2+4+8+9               6 -145.60 306.56  3.46   0.03
## 2+3+4+9+10            7 -144.25 307.17  4.08   0.02
## 2+4+8+9+10            7 -144.54 307.75  4.65   0.01
## 2+4+5+9+10            7 -144.68 308.03  4.93   0.01
## 2+4+7+9+10            7 -144.87 308.41  5.31   0.01
## 2+4+6+8               6 -146.53 308.43  5.33   0.01
## 2+3+4+6+10            7 -144.96 308.60  5.50   0.01
## 2+3+4+8               6 -146.63 308.63  5.53   0.01
## 2+3+4+7+10            7 -144.98 308.63  5.53   0.01
## 2+4                   4 -149.59 308.65  5.56   0.01
## 2+4+6+9+10            7 -145.01 308.70  5.60   0.01
## 1+2+4+9+10            7 -145.01 308.70  5.60   0.01
## 2+4+5+7+10            7 -145.03 308.73  5.63   0.01
## 2+4+5+8               6 -146.69 308.74  5.64   0.01
## 2+4+7+8               6 -146.69 308.75  5.65   0.01
## 1+2+4+8               6 -146.70 308.76  5.66   0.01
## 2+3+4+5+10            7 -145.05 308.77  5.67   0.01
## 2+4+5+6+10            7 -145.10 308.86  5.76   0.01
## 2+4+5+8+10            7 -145.11 308.88  5.79   0.01
## 2+3+4+8+10            7 -145.12 308.90  5.81   0.01
## 1+2+3+4+10            7 -145.12 308.91  5.81   0.01
## 2+3+4+8+9             7 -145.15 308.96  5.87   0.01
## 1+2+4+5+10            7 -145.16 308.98  5.89   0.01
## 2+4+7+8+10            7 -145.20 309.08  5.98   0.01
## 2+4+6+7+10            7 -145.24 309.14  6.05   0.01
## 1+2+4+7+10            7 -145.24 309.15  6.05   0.01
## 2+3+4+6               6 -146.89 309.15  6.05   0.01
## 1+2+4+8+10            7 -145.29 309.25  6.16   0.01
## 1+2+4                 5 -148.48 309.27  6.18   0.01
## 2+4+6+8+10            7 -145.33 309.32  6.22   0.01
## 1+2+4+6+10            7 -145.36 309.40  6.30   0.01
## 2+4+6                 5 -148.66 309.62  6.52   0.01
## 2+4+5+8+9             7 -145.49 309.64  6.55   0.01
## 2+4+6+8+9             7 -145.56 309.78  6.69   0.01
## 2+4+7+8+9             7 -145.59 309.84  6.74   0.01
## 1+2+4+8+9             7 -145.59 309.85  6.76   0.01
## 2+3+4+8+9+10          8 -143.92 310.10  7.00   0.00
## 1+2+3+4               6 -147.37 310.10  7.01   0.00
## 2+3+4                 5 -148.91 310.12  7.03   0.00
## 2+3+4+6+9+10          8 -143.99 310.24  7.15   0.00
## 1+2+3+4+9+10          8 -144.06 310.37  7.28   0.00
## 2+3+4+7+9+10          8 -144.10 310.46  7.36   0.00
## 2+4+5+8+9+10          8 -144.18 310.62  7.52   0.00
## 2+3+4+5+9+10          8 -144.21 310.68  7.59   0.00
## 2+4+7                 5 -149.20 310.71  7.62   0.00
## 2+3+4+6+8             7 -146.13 310.92  7.83   0.00
## 2+4+7+8+9+10          8 -144.45 311.15  8.06   0.00
## 1+2+4+8+9+10          8 -144.51 311.28  8.18   0.00
## 2+4+6+8+9+10          8 -144.53 311.32  8.23   0.00
## 2+4+5+7+9+10          8 -144.55 311.36  8.27   0.00
## 2+4+5                 5 -149.53 311.38  8.28   0.00
## 2+4+9                 5 -149.55 311.41  8.31   0.00
## 2+4+5+6+8             7 -146.41 311.49  8.39   0.00
## 1+2+4+5+9+10          8 -144.63 311.53  8.43   0.00
## 2+4+5+6+9+10          8 -144.65 311.55  8.46   0.00
## 2+3+4+6+8+9           8 -144.67 311.61  8.51   0.00
## 2+3+4+6+9             7 -146.49 311.65  8.56   0.00
## 1+2+4+6+8             7 -146.51 311.69  8.59   0.00
## 2+4+6+7+8             7 -146.53 311.73  8.64   0.00
## 1+2+3+4+9             7 -146.54 311.75  8.65   0.00
## 2+3+4+6+7+10          8 -144.75 311.75  8.66   0.00
## 1+2+3+4+8             7 -146.56 311.78  8.68   0.00
## 2+3+4+7+8             7 -146.62 311.90  8.80   0.00
## 2+3+4+5+8             7 -146.63 311.93  8.84   0.00
## 2+3+4+5+6+10          8 -144.85 311.96  8.87   0.00
## 1+2+3+4+6             7 -146.65 311.97  8.88   0.00
## 1+2+4+5+8             7 -146.66 311.98  8.88   0.00
## 2+4+5+7+8             7 -146.67 312.00  8.90   0.00
## 1+2+4+6               6 -148.32 312.00  8.90   0.00
## 2+4+6+7+9+10          8 -144.87 312.00  8.91   0.00
## 1+2+4+7+9+10          8 -144.87 312.00  8.91   0.00
## 1+2+4+7+8             7 -146.68 312.03  8.94   0.00
## 1+2+4+7               6 -148.34 312.04  8.94   0.00
## 1+2+3+4+8+9           8 -144.90 312.06  8.97   0.00
## 2+3+4+5+7+10          8 -144.91 312.09  8.99   0.00
## 2+4+5+6+7+10          8 -144.93 312.12  9.03   0.00
## 1+2+4+5               6 -148.40 312.16  9.07   0.00
## 1+2+3+4+6+10          8 -144.96 312.18  9.08   0.00
## 2+3+4+6+8+10          8 -144.96 312.19  9.09   0.00
## 1+2+3+4+7+10          8 -144.98 312.21  9.12   0.00
## 2+3+4+7+8+10          8 -144.98 312.22  9.12   0.00
## 2+4+5+7+8+10          8 -144.99 312.24  9.15   0.00
## 1+2+4+9               6 -148.46 312.27  9.18   0.00
## 1+2+4+6+9+10          8 -145.01 312.29  9.19   0.00
## 1+2+4+5+7+10          8 -145.03 312.32  9.22   0.00
## 1+2+3+4+5+10          8 -145.03 312.32  9.23   0.00
## 2+3+4+5+8+10          8 -145.04 312.33  9.24   0.00
## 2+4+5+6+8+10          8 -145.05 312.35  9.26   0.00
## 2+3+4+5+6             7 -146.88 312.44  9.34   0.00
## 1+2+4+5+6+10          8 -145.09 312.45  9.35   0.00
## 2+3+4+6+7             7 -146.89 312.45  9.36   0.00
## 2+4+6+7               6 -148.56 312.47  9.38   0.00
## 1+2+4+5+8+10          8 -145.11 312.48  9.38   0.00
## 2+3+4+5               6 -148.56 312.49  9.39   0.00
## 1+2+3+4+8+10          8 -145.12 312.49  9.40   0.00
## 2+3+4+7+8+9           8 -145.13 312.53  9.43   0.00
## 2+3+4+5+8+9           8 -145.15 312.56  9.46   0.00
## 2+4+5+6               6 -148.60 312.56  9.46   0.00
## 2+3+4+7               6 -148.60 312.56  9.46   0.00
## 1+2+4+7+8+10          8 -145.17 312.60  9.50   0.00
## 2+4+6+9               6 -148.63 312.63  9.53   0.00
## 2+4+6+7+8+10          8 -145.19 312.64  9.55   0.00
## 1+2+4+6+7+10          8 -145.19 312.65  9.55   0.00
## 1+2+4+6+8+10          8 -145.26 312.78  9.69   0.00
## 2+4+5+6+8+9           8 -145.36 312.98  9.88   0.00
## 2+3+4+9               6 -148.86 313.09  9.99   0.00
## 1+2+4+5+8+9           8 -145.43 313.13 10.03   0.00
## 2+4+5+7+8+9           8 -145.46 313.19 10.09   0.00
## 1+2+3+4+7             7 -147.31 313.29 10.20   0.00
## 2+4+6+7+8+9           8 -145.55 313.37 10.27   0.00
## 1+2+4+6+8+9           8 -145.56 313.37 10.28   0.00
## 1+2+3+4+5             7 -147.37 313.40 10.30   0.00
## 1+2+4+7+8+9           8 -145.58 313.42 10.33   0.00
## 2+3+4+6+7+9+10        9 -143.74 313.65 10.56   0.00
## 2+3+4+6+8+9+10        9 -143.76 313.69 10.60   0.00
## 2+3                   4 -152.12 313.71 10.62   0.00
## 2+4+5+7               6 -149.19 313.74 10.64   0.00
## 2+4+7+9               6 -149.20 313.75 10.66   0.00
## 2+3+4+7+8+9+10        9 -143.81 313.80 10.70   0.00
## 2+3+4+5+8+9+10        9 -143.85 313.88 10.78   0.00
## 1+2+3+4+8+9+10        9 -143.85 313.88 10.78   0.00
## 1+2+3+4+6+9           8 -145.83 313.92 10.83   0.00
## 2+3+4+5+6+9+10        9 -143.91 314.00 10.90   0.00
## 1+2+3+4+7+9+10        9 -143.91 314.00 10.91   0.00
## 1+2+3+4+6+9+10        9 -143.92 314.02 10.92   0.00
## 3+6+7                 5 -150.88 314.06 10.96   0.00
## 1+2+3+4+5+9+10        9 -143.96 314.11 11.01   0.00
## 3+4+6                 5 -150.95 314.20 11.11   0.00
## 2+3+4+5+7+9+10        9 -144.06 314.31 11.21   0.00
## 2+4+5+9               6 -149.50 314.36 11.26   0.00
## 2+4+5+7+8+9+10        9 -144.10 314.37 11.28   0.00
## 2+3+4+5+6+8           8 -146.11 314.48 11.38   0.00
## 2+3+4+6+7+8           8 -146.12 314.50 11.40   0.00
## 2+4+5+6+8+9+10        9 -144.17 314.51 11.42   0.00
## 1+2+3+4+6+8           8 -146.13 314.51 11.42   0.00
## 1+2+4+5+8+9+10        9 -144.18 314.54 11.44   0.00
## 2+3+6+7               6 -149.63 314.63 11.53   0.00
## 2+3+8                 5 -151.22 314.75 11.66   0.00
## 2+3+7+8               6 -149.78 314.92 11.82   0.00
## 3+4+6+7               6 -149.78 314.92 11.82   0.00
## 2+3+6                 5 -151.34 314.99 11.89   0.00
## 1+2+4+5+6             7 -148.16 314.99 11.90   0.00
## 1+2+4+7+8+9+10        9 -144.41 315.01 11.91   0.00
## 2+4+6+7+8+9+10        9 -144.44 315.07 11.97   0.00
## 1+2+4+5+6+8           8 -146.41 315.07 11.98   0.00
## 2+4+5+6+7+8           8 -146.41 315.08 11.99   0.00
## 1+2+4+6+7             7 -148.24 315.14 12.04   0.00
## 1+2+4+5+7             7 -148.24 315.14 12.05   0.00
## 2+4+5+6+7+9+10        9 -144.49 315.16 12.07   0.00
## 2+3+4+5+6+9           8 -146.46 315.19 12.09   0.00
## 1+2+4+6+8+9+10        9 -144.51 315.20 12.10   0.00
## 1+2+4+5+7+9+10        9 -144.51 315.20 12.10   0.00
## 1+2+3+4+7+9           8 -146.47 315.20 12.11   0.00
## 2+3+4+6+7+9           8 -146.49 315.25 12.15   0.00
## 1+2+4+7+9             7 -148.30 315.26 12.17   0.00
## 1+2+4+6+7+8           8 -146.51 315.28 12.19   0.00
## 1+2+4+6+9             7 -148.31 315.29 12.20   0.00
## 1+2+3+4+5+9           8 -146.54 315.33 12.24   0.00
## 1+2+3+4+7+8           8 -146.54 315.35 12.25   0.00
## 1+2+3+4+5+8           8 -146.55 315.36 12.27   0.00
## 1+2+4+5+9             7 -148.36 315.38 12.28   0.00
## 1+2+3+4+6+8+9         9 -144.61 315.39 12.30   0.00
## 2+3+4+5+7             7 -148.38 315.42 12.32   0.00
## 1+2+4+5+6+9+10        9 -144.62 315.43 12.33   0.00
## 2+3+7                 5 -151.57 315.44 12.35   0.00
## 2+3+4+5+6+7+10        9 -144.63 315.45 12.36   0.00
## 2+3+4+5+6+8+9         9 -144.65 315.49 12.39   0.00
## 2+3+4+5+7+8           8 -146.62 315.49 12.40   0.00
## 2+3+4+6+7+8+9         9 -144.67 315.51 12.42   0.00
## 1+2+4+5+7+8           8 -146.64 315.53 12.44   0.00
## 1+2+3+4+5+6           8 -146.65 315.56 12.47   0.00
## 2+3+4+5+9             7 -148.45 315.56 12.47   0.00
## 1+2+3+4+6+7           8 -146.65 315.56 12.47   0.00
## 1+2+3+4+6+7+10        9 -144.73 315.63 12.54   0.00
## 2+4+5+6+7             7 -148.50 315.66 12.56   0.00
## 2+3+4+6+7+8+10        9 -144.74 315.66 12.57   0.00
## 2+3+4+7+9             7 -148.51 315.69 12.60   0.00
## 2+4+6+7+9             7 -148.55 315.76 12.67   0.00
## 1+2+3                 5 -151.73 315.77 12.68   0.00
## 2+4+5+6+9             7 -148.58 315.83 12.73   0.00
## 1+2+3+4+5+6+10        9 -144.85 315.88 12.79   0.00
## 2+3+4+5+6+8+10        9 -144.85 315.88 12.79   0.00
## 1+2+4+6+7+9+10        9 -144.87 315.92 12.82   0.00
## 1+2+3+4+5+8+9         9 -144.88 315.95 12.85   0.00
## 3+6+7+8               6 -150.30 315.96 12.87   0.00
## 1+2+3+4+7+8+9         9 -144.89 315.97 12.88   0.00
## 2+4+5+6+7+8+10        9 -144.90 315.98 12.88   0.00
## 1+2+3+4+5+7+10        9 -144.90 315.98 12.88   0.00
## 2+3+4+5+7+8+10        9 -144.91 316.00 12.90   0.00
## 1+2+4+5+6+7+10        9 -144.92 316.03 12.93   0.00
## 2+3+4+5+6+7           8 -146.88 316.03 12.93   0.00
## 1+2+3+4+6+8+10        9 -144.96 316.09 13.00   0.00
## 2+3+8+10              6 -150.38 316.12 13.02   0.00
## 1+2+3+4+7+8+10        9 -144.98 316.13 13.04   0.00
## 1+2+4+5+7+8+10        9 -144.99 316.16 13.07   0.00
## 1+2+3+4+5+8+10        9 -145.03 316.24 13.14   0.00
## 1+2+4+5+6+8+10        9 -145.03 316.24 13.14   0.00
## 3+4+6+8               6 -150.45 316.26 13.17   0.00
## 2+3+7+8+9             7 -148.83 316.33 13.24   0.00
## 1+2+4+6+7+8+10        9 -145.10 316.39 13.30   0.00
## 2+3+8+9               6 -150.52 316.40 13.30   0.00
## 2+3+9                 5 -152.07 316.44 13.34   0.00
## 2+3+4+5+7+8+9         9 -145.13 316.45 13.35   0.00
## 2+3+5                 5 -152.07 316.45 13.35   0.00
## 2+3+10                5 -152.12 316.54 13.44   0.00
## 1+2+3+7               6 -150.60 316.55 13.45   0.00
## 3+6+7+9               6 -150.67 316.70 13.60   0.00
## 3+4+6+9               6 -150.68 316.72 13.62   0.00
## 2+3+6+7+8             7 -149.07 316.80 13.71   0.00
## 3+4+6+7+8             7 -149.09 316.84 13.74   0.00
## 1+2+3+4+5+7           8 -147.31 316.88 13.79   0.00
## 1+2+4+5+6+8+9         9 -145.35 316.89 13.79   0.00
## 2+4+5+6+7+8+9         9 -145.35 316.89 13.79   0.00
## 1+2+4+5+7+8+9         9 -145.41 317.01 13.91   0.00
## 2+4+5+7+9             7 -149.18 317.03 13.93   0.00
## 3+5+6+7               6 -150.84 317.03 13.94   0.00
## 1+3+6+7               6 -150.84 317.04 13.95   0.00
## 3+6+7+10              6 -150.88 317.11 14.02   0.00
## 2+8+10                5 -152.41 317.13 14.03   0.00
## 3+4+5+6               6 -150.89 317.15 14.05   0.00
## 3+4+6+10              6 -150.92 317.19 14.10   0.00
## 1+3+4+6               6 -150.92 317.20 14.10   0.00
## 2+3+8+9+10            7 -149.30 317.26 14.16   0.00
## 2+3+6+10              6 -150.96 317.28 14.18   0.00
## 1+2+4+6+7+8+9         9 -145.55 317.29 14.19   0.00
## 2+3+7+10              6 -151.02 317.40 14.31   0.00
## 2+3+6+7+9             7 -149.39 317.44 14.34   0.00
## 2+3+6+8               6 -151.06 317.47 14.38   0.00
## 2+3+6+9               6 -151.11 317.57 14.48   0.00
## 3+6+7+8+9             7 -149.46 317.58 14.49   0.00
## 2+3+4+6+7+8+9+10     10 -143.57 317.61 14.51   0.00
## 3+4+6+7+9             7 -149.51 317.70 14.60   0.00
## 3+4+6+8+9             7 -149.52 317.70 14.60   0.00
## 3+6+8+10              6 -151.17 317.70 14.60   0.00
## 2+3+5+8               6 -151.18 317.72 14.62   0.00
## 3+4+6+7+10            7 -149.56 317.78 14.68   0.00
## 2+3+4+5+6+8+9+10     10 -143.65 317.78 14.68   0.00
## 1+2+3+8               6 -151.22 317.79 14.70   0.00
## 2+3+4+5+6+7+9+10     10 -143.66 317.79 14.70   0.00
## 1+2+3+6+7             7 -149.56 317.79 14.70   0.00
## 2+3+6+7+10            7 -149.58 317.82 14.72   0.00
## 1+2+3+4+5+6+9         9 -145.83 317.84 14.74   0.00
## 1+2+3+4+6+7+9         9 -145.83 317.84 14.75   0.00
## 1+2+3+4+6+7+9+10     10 -143.69 317.85 14.76   0.00
## 3+6+10                5 -152.78 317.87 14.77   0.00
## 2+3+5+6+7             7 -149.63 317.93 14.83   0.00
## 1+2+3+4+7+8+9+10     10 -143.74 317.95 14.85   0.00
## 1+2+3+4+6+8+9+10     10 -143.74 317.95 14.85   0.00
## 1+2+3+4+5+8+9+10     10 -143.74 317.96 14.87   0.00
## 2+3+4+5+7+8+9+10     10 -143.74 317.97 14.87   0.00
## 2+3+5+6               6 -151.32 318.00 14.90   0.00
## 1+2+3+6               6 -151.33 318.03 14.93   0.00
## 4+6+7+8               6 -151.35 318.05 14.96   0.00
## 1+3+4+6+7             7 -149.70 318.06 14.96   0.00
## 3+4+5+6+7             7 -149.70 318.06 14.97   0.00
## 2+3+5+7               6 -151.36 318.07 14.98   0.00
## 1+2+3+4+5+6+9+10     10 -143.80 318.09 14.99   0.00
## 1+2+3+4+5+7+9+10     10 -143.83 318.13 15.04   0.00
## 2+3+7+8+10            7 -149.75 318.17 15.08   0.00
## 1+2+3+9               6 -151.41 318.18 15.08   0.00
## 1+2+3+7+8             7 -149.76 318.19 15.09   0.00
## 2+3+5+7+8             7 -149.78 318.22 15.13   0.00
## 4+6+8                 5 -152.98 318.28 15.18   0.00
## 3+4+6+7+8+9           8 -148.01 318.29 15.19   0.00
## 2+7+8                 5 -152.99 318.29 15.19   0.00
## 1+2+3+10              6 -151.48 318.32 15.22   0.00
## 3+6                   4 -154.45 318.38 15.29   0.00
## 2+3+4+5+6+7+8         9 -146.10 318.38 15.29   0.00
## 1+2+3+4+5+6+8         9 -146.10 318.39 15.30   0.00
## 1+2+4+5+6+7           8 -148.07 318.41 15.31   0.00
## 1+2+3+4+6+7+8         9 -146.12 318.42 15.32   0.00
## 2+3+7+9               6 -151.55 318.45 15.36   0.00
## 2+3+6+8+10            7 -149.91 318.48 15.38   0.00
## 2+3+6+7+8+9           8 -148.14 318.54 15.45   0.00
## 1+2+4+5+6+9           8 -148.15 318.55 15.46   0.00
## 1+2+4+5+7+9           8 -148.17 318.60 15.50   0.00
## 2+4+5+6+7+8+9+10     10 -144.07 318.61 15.51   0.00
## 1+2+4+5+7+8+9+10     10 -144.09 318.66 15.57   0.00
## 3+4+6+8+10            7 -150.00 318.67 15.58   0.00
## 1+2+4+6+7+9           8 -148.22 318.70 15.61   0.00
## 2+3+4+5+7+9           8 -148.23 318.72 15.62   0.00
## 3+6+7+8+10            7 -150.04 318.74 15.64   0.00
## 3+6+8+9+10            7 -150.04 318.75 15.66   0.00
## 2+7+8+10              6 -151.71 318.78 15.69   0.00
## 1+2+4+5+6+8+9+10     10 -144.17 318.81 15.71   0.00
## 1+2+3+5               6 -151.73 318.82 15.72   0.00
## 8+10                  4 -154.69 318.86 15.76   0.00
## 1+2+4+5+6+7+8         9 -146.41 318.99 15.90   0.00
## 1+2+3+7+9             7 -150.18 319.02 15.92   0.00
## 2+5+7+8               6 -151.84 319.03 15.94   0.00
## 4+6+8+10              6 -151.85 319.05 15.96   0.00
## 2+3+4+5+6+7+9         9 -146.46 319.11 16.01   0.00
## 1+2+3+4+5+7+9         9 -146.47 319.12 16.02   0.00
## 1+3+6+7+8             7 -150.23 319.13 16.04   0.00
## 2+5+8+10              6 -151.93 319.22 16.12   0.00
## 1+2+7+8               6 -151.93 319.23 16.13   0.00
## 2+4+5+6+7+9           8 -148.49 319.24 16.14   0.00
## 1+2+3+4+5+7+8         9 -146.54 319.25 16.16   0.00
## 3+5+6+7+8             7 -150.30 319.27 16.17   0.00
## 1+2+4+6+7+8+9+10     10 -144.41 319.29 16.20   0.00
## 2+3+5+9               6 -151.99 319.35 16.25   0.00
## 1+2+3+8+10            7 -150.35 319.38 16.28   0.00
## 2+3+5+8+10            7 -150.38 319.42 16.32   0.00
## 2+3+6+8+9             7 -150.38 319.43 16.34   0.00
## 1+2+4+5+6+7+9+10     10 -144.48 319.44 16.34   0.00
## 1+3+4+6+8             7 -150.39 319.45 16.35   0.00
## 2+3+5+10              6 -152.06 319.47 16.38   0.00
## 1+2+3+4+5+6+7         9 -146.65 319.48 16.39   0.00
## 2+3+9+10              6 -152.06 319.49 16.39   0.00
## 1+2+8+10              6 -152.07 319.50 16.40   0.00
## 3+4+5+6+8             7 -150.45 319.57 16.47   0.00
## 2+3+5+8+9             7 -150.47 319.60 16.50   0.00
## 1+2+3+4+5+6+8+9      10 -144.57 319.61 16.52   0.00
## 1+2+3+4+6+7+8+9      10 -144.60 319.67 16.58   0.00
## 1+3+4+6+9             7 -150.51 319.69 16.60   0.00
## 1+3+6+7+9             7 -150.52 319.70 16.60   0.00
## 1+2+3+8+9             7 -150.52 319.70 16.61   0.00
## 2+3+7+8+9+10          8 -148.73 319.71 16.62   0.00
## 2+8+9+10              6 -152.18 319.72 16.63   0.00
## 1+2+3+7+10            7 -150.53 319.73 16.63   0.00
## 1+2+3+4+5+6+7+10     10 -144.63 319.73 16.64   0.00
## 2+3+4+5+6+7+8+10     10 -144.63 319.74 16.65   0.00
## 1+2+3+7+8+9           8 -148.75 319.76 16.66   0.00
## 4+7+8                 5 -153.73 319.76 16.67   0.00
## 2+3+4+5+6+7+8+9      10 -144.65 319.77 16.67   0.00
## 1+2+3+5+7             7 -150.59 319.84 16.75   0.00
## 3+4+5+6+9             7 -150.59 319.84 16.75   0.00
## 3+5+6+7+9             7 -150.60 319.87 16.78   0.00
## 2+3+6+8+9+10          8 -148.81 319.87 16.78   0.00
## 3+4+6+8+9+10          8 -148.83 319.92 16.83   0.00
## 2+3+5+7+8+9           8 -148.83 319.93 16.83   0.00
## 1+2+3+4+6+7+8+10     10 -144.73 319.93 16.83   0.00
## 4+8                   4 -155.23 319.93 16.84   0.00
## 3+6+7+9+10            7 -150.67 320.00 16.90   0.00
## 3+4+6+9+10            7 -150.67 320.00 16.91   0.00
## 3+7+8                 5 -153.85 320.02 16.92   0.00
## 2+6+8+10              6 -152.35 320.06 16.97   0.00
## 4+8+10                5 -153.91 320.13 17.03   0.00
## 1+4+6+8               6 -152.38 320.13 17.03   0.00
## 1+2+3+4+5+6+8+10     10 -144.85 320.17 17.08   0.00
## 1+2+4+5+6+7+8+10     10 -144.87 320.21 17.12   0.00
## 1+2+3+4+5+7+8+9      10 -144.87 320.22 17.13   0.00
## 2+3+6+9+10            7 -150.78 320.23 17.13   0.00
## 3+6+7+8+9+10          8 -148.99 320.23 17.14   0.00
## 1+2+3+4+5+7+8+10     10 -144.90 320.27 17.18   0.00
## 3+8+10                5 -153.99 320.29 17.19   0.00
## 2+3+6+7+8+10          8 -149.02 320.30 17.20   0.00
## 1+3+5+6+7             7 -150.82 320.30 17.20   0.00
## 1+2+3+6+10            7 -150.82 320.31 17.22   0.00
## 1+3+6+7+10            7 -150.83 320.33 17.23   0.00
## 3+5+6+7+10            7 -150.83 320.33 17.24   0.00
## 7+8+10                5 -154.02 320.34 17.24   0.00
## 1+2+3+6+7+8           8 -149.04 320.34 17.24   0.00
## 1+3+4+6+10            7 -150.84 320.35 17.26   0.00
## 3+4+5+6+10            7 -150.84 320.35 17.26   0.00
## 2+3+5+6+7+8           8 -149.05 320.36 17.26   0.00
## 1+3+4+6+7+8           8 -149.05 320.36 17.27   0.00
## 3+4+5+6+7+8           8 -149.08 320.42 17.32   0.00
## 6+8+10                5 -154.06 320.42 17.33   0.00
## 1+3+4+5+6             7 -150.88 320.43 17.33   0.00
## 1+4+6+7+8             7 -150.88 320.43 17.34   0.00
## 3+4+6+7+8+10          8 -149.09 320.43 17.34   0.00
## 2+3+7+9+10            7 -150.93 320.52 17.42   0.00
## 1+3+6+10              6 -152.58 320.53 17.43   0.00
## 1+2+3+6+7+9           8 -149.14 320.55 17.45   0.00
## 2+3+5+6+10            7 -150.96 320.58 17.48   0.00
## 1+2+3+8+9+10          8 -149.16 320.58 17.49   0.00
## 2+3+5+7+10            7 -150.97 320.60 17.51   0.00
## 2+3+5+6+8             7 -150.97 320.61 17.51   0.00
## 3+4+6+7+9+10          8 -149.19 320.64 17.55   0.00
## 1+2+3+6+8             7 -150.99 320.65 17.56   0.00
## 2+6+7+8               6 -152.67 320.70 17.61   0.00
## 1+2+3+6+9             7 -151.03 320.72 17.62   0.00
## 1+3+4+6+7+9           8 -149.23 320.73 17.63   0.00
## 3+6+9+10              6 -152.69 320.74 17.64   0.00
## 3+5+6+10              6 -152.69 320.74 17.65   0.00
## 8+9+10                5 -154.23 320.76 17.67   0.00
## 2+3+6+7+9+10          8 -149.29 320.84 17.74   0.00
## 3+6+8                 5 -154.27 320.84 17.75   0.00
## 2+3+5+8+9+10          8 -149.30 320.85 17.76   0.00
## 2+3+5+6+9             7 -151.10 320.86 17.77   0.00
## 4+5+6+8               6 -152.76 320.87 17.78   0.00
## 4+6+7+8+9             7 -151.10 320.88 17.78   0.00
## 3+6+9                 5 -154.29 320.88 17.78   0.00
## 1+2+3+9+10            7 -151.11 320.90 17.80   0.00
## 7+8                   4 -155.72 320.92 17.82   0.00
## 1+3+6+8+10            7 -151.16 320.98 17.88   0.00
## 3+5+6+8+10            7 -151.16 321.00 17.90   0.00
## 4+5+6+7+8             7 -151.17 321.00 17.91   0.00
## 2+3+5+6+7+9           8 -149.37 321.01 17.91   0.00
## 4+6+8+9               6 -152.83 321.01 17.92   0.00
## 4+6+7+8+10            7 -151.17 321.02 17.92   0.00
## 1+2+3+5+8             7 -151.18 321.02 17.92   0.00
## 3+4+5+6+7+9           8 -149.39 321.04 17.95   0.00
## 3+8+9+10              6 -152.87 321.10 18.00   0.00
## 1+3+6+7+8+9           8 -149.45 321.15 18.06   0.00
## 1+3+6                 5 -154.43 321.17 18.07   0.00
## 1+2+4+5+6+7+8+9      10 -145.35 321.17 18.07   0.00
## 3+5+6+7+8+9           8 -149.46 321.18 18.08   0.00
## 3+5+6                 5 -154.45 321.21 18.11   0.00
## 2+5+7+8+10            7 -151.28 321.22 18.13   0.00
## 1+2+3+5+6             7 -151.30 321.27 18.18   0.00
## 1+3+4+6+8+9           8 -149.51 321.28 18.18   0.00
## 2+3+5+7+9             7 -151.31 321.28 18.18   0.00
## 3+4+5+6+8+9           8 -149.51 321.28 18.19   0.00
## 3+4+5+6+7+10          8 -149.52 321.30 18.20   0.00
## 2+7+8+9               6 -152.99 321.34 18.24   0.00
## 1+2+3+6+7+10          8 -149.54 321.35 18.25   0.00
## 1+3+4+6+7+10          8 -149.55 321.35 18.26   0.00
## 1+2+3+5+6+7           8 -149.56 321.39 18.29   0.00
## 2+3+5+6+7+10          8 -149.58 321.41 18.32   0.00
## 1+2+7+8+10            7 -151.40 321.46 18.36   0.00
## 3+7+8+9               6 -153.06 321.47 18.38   0.00
## 1+2+3+5+9             7 -151.40 321.47 18.38   0.00
## 4+6+8+9+10            7 -151.42 321.51 18.42   0.00
## 1+3+4+5+6+7           8 -149.65 321.56 18.46   0.00
## 1+2+3+5+10            7 -151.48 321.62 18.52   0.00
## 2+7+8+9+10            7 -151.50 321.67 18.57   0.00
## 1+8+10                5 -154.69 321.68 18.58   0.00
## 5+8+10                5 -154.69 321.68 18.59   0.00
## 4+8+9+10              6 -153.16 321.68 18.59   0.00
## 6+7+8+10              6 -153.17 321.70 18.60   0.00
## 1+2+5+7+8             7 -151.52 321.71 18.61   0.00
## 1+2+3+7+8+10          8 -149.73 321.72 18.62   0.00
## 2+3+5+7+8+10          8 -149.75 321.77 18.67   0.00
## 1+2+3+5+7+8           8 -149.76 321.78 18.68   0.00
## 1+4+6+8+10            7 -151.56 321.79 18.70   0.00
## 3+4+8                 5 -154.75 321.81 18.72   0.00
## 2+5+8+9+10            7 -151.58 321.83 18.74   0.00
## 4+7+8+9               6 -153.24 321.84 18.74   0.00
## 4+8+9                 5 -154.86 322.03 18.94   0.00
## 2+3+5+6+8+10          8 -149.89 322.04 18.95   0.00
## 1+2+3+6+8+10          8 -149.90 322.06 18.96   0.00
## 2+6+7+8+10            7 -151.70 322.07 18.98   0.00
## 3+7+8+10              6 -153.37 322.09 19.00   0.00
## 3+4+7+8               6 -153.38 322.13 19.03   0.00
## 1+2+3+4+5+6+7+9      10 -145.83 322.13 19.04   0.00
## 2+3+4+5+6+7+8+9+10   11 -143.47 322.14 19.04   0.00
## 4+5+6+8+10            7 -151.74 322.14 19.05   0.00
## 2+3+6+7+8+9+10        9 -147.98 322.14 19.05   0.00
## 3+4+6+7+8+9+10        9 -147.99 322.16 19.06   0.00
## 2+5+7+8+9             7 -151.75 322.16 19.06   0.00
## 3+4+5+6+7+8+9         9 -148.01 322.19 19.10   0.00
## 4+7+8+10              6 -153.42 322.20 19.11   0.00
## 1+3+4+6+7+8+9         9 -148.01 322.21 19.11   0.00
## 1+3+4+6+8+10          8 -149.98 322.23 19.13   0.00
## 3+4+5+6+8+10          8 -149.99 322.25 19.15   0.00
## 1+2+4+5+6+7+9         9 -148.04 322.26 19.17   0.00
## 1+3+6+7+8+10          8 -150.01 322.27 19.18   0.00
## 1+2+5+8+10            7 -151.81 322.29 19.19   0.00
## 1+2+3+4+6+7+8+9+10   11 -143.55 322.31 19.21   0.00
## 1+3+6+8+9+10          8 -150.03 322.32 19.23   0.00
## 3+5+6+7+8+10          8 -150.03 322.33 19.23   0.00
## 1+2+8+9+10            7 -151.83 322.33 19.24   0.00
## 3+5+6+8+9+10          8 -150.04 322.33 19.24   0.00
## 2+5+6+7+8             7 -151.83 322.34 19.24   0.00
## 1+2+3+4+5+6+7+9+10   11 -143.59 322.37 19.28   0.00
## 2+3+5+6+7+8+9         9 -148.12 322.42 19.32   0.00
## 1+2+3+4+5+6+8+9+10   11 -143.62 322.43 19.34   0.00
## 1+2+3+6+7+8+9         9 -148.14 322.46 19.37   0.00
## 1+2+7+8+9             7 -151.90 322.47 19.37   0.00
## 1+2+3+4+5+7+8+9+10   11 -143.64 322.48 19.39   0.00
## 1+2+3+7+9+10          8 -150.12 322.50 19.40   0.00
## 3+5+7+8               6 -153.57 322.50 19.40   0.00
## 7+8+9+10              6 -153.58 322.52 19.42   0.00
## 1+2+6+7+8             7 -151.93 322.52 19.42   0.00
## 2+5+6+8+10            7 -151.93 322.52 19.43   0.00
## 1+2+3+5+7+9           8 -150.17 322.59 19.50   0.00
## 2+3+5+9+10            7 -151.99 322.65 19.55   0.00
## 1+3+7+8               6 -153.65 322.67 19.57   0.00
## 4+5+7+8               6 -153.65 322.67 19.57   0.00
## 1+2+3+4+5+6+7+8      10 -146.10 322.67 19.58   0.00
## 4+5+8                 5 -155.18 322.68 19.58   0.00
## 1+6+8+10              6 -153.68 322.71 19.62   0.00
## 1+3+5+6+7+8           8 -150.23 322.72 19.62   0.00
## 3+5+8+10              6 -153.69 322.74 19.64   0.00
## 1+4+8                 5 -155.22 322.75 19.65   0.00
## 1+4+7+8               6 -153.69 322.75 19.65   0.00
## 3+4+8+10              6 -153.70 322.76 19.66   0.00
## 1+3+8+10              6 -153.70 322.77 19.67   0.00
## 1+2+6+8+10            7 -152.06 322.79 19.70   0.00
## 2+6+8+9+10            7 -152.07 322.80 19.70   0.00
## 2+3+5+6+8+9           8 -150.29 322.84 19.75   0.00
## 6+8+9+10              6 -153.80 322.96 19.86   0.00
## 4+5+8+10              6 -153.80 322.96 19.87   0.00
## 1+2+3+5+8+10          8 -150.35 322.96 19.87   0.00
## 3+6+8+9               6 -153.81 322.98 19.89   0.00
## 5+6+8+10              6 -153.82 323.00 19.90   0.00
## 1+2+3+6+8+9           8 -150.37 323.00 19.90   0.00
## 1+4+8+10              6 -153.82 323.00 19.91   0.00
## 1+3+4+5+6+8           8 -150.38 323.02 19.93   0.00
## 4+6                   4 -156.81 323.11 20.01   0.00
## 1+3+4+6+9+10          8 -150.43 323.12 20.03   0.00
## 1+7+8                 5 -155.41 323.14 20.04   0.00
## 1+4+6+8+9             7 -152.25 323.18 20.08   0.00
## 1+2+3+5+8+9           8 -150.46 323.18 20.08   0.00
## 1+2+3+6+9+10          8 -150.46 323.19 20.09   0.00
## 6+7+8                 5 -155.44 323.19 20.09   0.00
## 1+3+4+5+6+9           8 -150.47 323.20 20.10   0.00
## 1+3+5+6+7+9           8 -150.49 323.24 20.14   0.00
## 3+4+8+9               6 -153.94 323.25 20.15   0.00
## 1+3+6+7+9+10          8 -150.50 323.26 20.17   0.00
## 1+4+5+6+8             7 -152.30 323.26 20.17   0.00
## 1+3+8+9+10            7 -152.30 323.27 20.18   0.00
## 3+7+8+9+10            7 -152.31 323.28 20.18   0.00
## 1+3+6+9+10            7 -152.33 323.32 20.22   0.00
## 1+2+3+5+7+10          8 -150.53 323.32 20.22   0.00
## 1+2+4+5+6+7+8+9+10   11 -144.06 323.33 20.23   0.00
## 1+2+3+7+8+9+10        9 -148.59 323.36 20.27   0.00
## 5+7+8                 5 -155.53 323.38 20.28   0.00
## 5+7+8+10              6 -154.01 323.39 20.29   0.00
## 3+4+5+6+9+10          8 -150.56 323.39 20.29   0.00
## 1+7+8+10              6 -154.02 323.39 20.29   0.00
## 1+3+7                 5 -155.55 323.41 20.32   0.00
## 4+6+7                 5 -155.56 323.44 20.34   0.00
## 3+5+6+7+9+10          8 -150.60 323.47 20.37   0.00
## 1+3+6+8               6 -154.06 323.47 20.38   0.00
## 3+8                   4 -157.03 323.55 20.45   0.00
## 3+4+7+8+9             7 -152.46 323.59 20.49   0.00
## 1+6+7+8               6 -154.12 323.60 20.50   0.00
## 1+4+6+7+8+9           8 -150.67 323.61 20.51   0.00
## 2+3+5+7+8+9+10        9 -148.73 323.63 20.54   0.00
## 1+2+3+5+7+8+9         9 -148.74 323.66 20.57   0.00
## 7+8+9                 5 -155.70 323.72 20.62   0.00
## 1+3+5+6+10            7 -152.54 323.75 20.65   0.00
## 1+2+3+6+8+9+10        9 -148.79 323.76 20.66   0.00
## 3+5+8+9+10            7 -152.55 323.77 20.67   0.00
## 2+3+5+6+8+9+10        9 -148.80 323.77 20.68   0.00
## 4+5+6+8+9             7 -152.55 323.78 20.68   0.00
## 5+8+9+10              6 -154.21 323.78 20.69   0.00
## 3+4+8+9+10            7 -152.56 323.79 20.69   0.00
## 1+8+9+10              6 -154.22 323.81 20.71   0.00
## 2+3+5+6+9+10          8 -150.78 323.81 20.72   0.00
## 3+4+5+6+8+9+10        9 -148.82 323.82 20.72   0.00
## 1+2+8                 5 -155.75 323.82 20.72   0.00
## 3+5+6+9+10            7 -152.58 323.82 20.73   0.00
## 1+3+4+6+8+9+10        9 -148.82 323.83 20.73   0.00
## 1+3+4+5+6+10          8 -150.80 323.85 20.76   0.00
## 1+3+5+6+7+10          8 -150.80 323.87 20.77   0.00
## 3+5+6+8               6 -154.26 323.87 20.78   0.00
## 1+4+5+6+7+8           8 -150.81 323.89 20.79   0.00
## 4+6+7+8+9+10          8 -150.82 323.89 20.80   0.00
## 1+4+6+7+8+10          8 -150.82 323.89 20.80   0.00
## 1+2+3+5+6+10          8 -150.82 323.90 20.81   0.00
## 3+5+6+9               6 -154.28 323.93 20.83   0.00
## 1+3+6+9               6 -154.29 323.93 20.84   0.00
## 2+6+7+8+9             7 -152.64 323.95 20.86   0.00
## 2+3+5+7+9+10          8 -150.85 323.97 20.87   0.00
## 2+5+8                 5 -155.84 324.00 20.90   0.00
## 4+5+6+7+8+9           8 -150.88 324.02 20.92   0.00
## 1+2+5+8               6 -154.34 324.05 20.95   0.00
## 1+3+7+8+9             7 -152.69 324.05 20.96   0.00
## 1+6+7+8+10            7 -152.70 324.06 20.96   0.00
## 4+6+9                 5 -155.90 324.11 21.01   0.00
## 1+2+3+5+6+8           8 -150.93 324.12 21.02   0.00
## 4+7+8+9+10            7 -152.73 324.13 21.04   0.00
## 3+5+6+7+8+9+10        9 -148.98 324.14 21.05   0.00
## 1+3+6+7+8+9+10        9 -148.98 324.15 21.06   0.00
## 3+4+5+8               6 -154.40 324.15 21.06   0.00
## 2+5+7+8+9+10          8 -150.96 324.18 21.08   0.00
## 1+2+3+6+7+8+10        9 -149.00 324.18 21.08   0.00
## 2+3+5+6+7+8+10        9 -149.00 324.19 21.09   0.00
## 3+5+7+8+9             7 -152.77 324.20 21.11   0.00
## 1+3+5+6               6 -154.43 324.21 21.12   0.00
## 1+2+3+5+6+7+8         9 -149.03 324.23 21.14   0.00
## 1+2+3+5+6+9           8 -151.00 324.25 21.16   0.00
## 1+3+4+5+6+7+8         9 -149.04 324.26 21.16   0.00
## 1+3+4+6+7+8+10        9 -149.05 324.28 21.19   0.00
## 1+2+3+4+5+6+7+8+9    11 -144.56 324.33 21.23   0.00
## 4+5+6+7+8+10          8 -151.04 324.34 21.24   0.00
## 3+4+5+6+7+8+10        9 -149.08 324.34 21.25   0.00
## 1+3+4+6+7+9+10        9 -149.08 324.34 21.25   0.00
## 2+7+9                 5 -156.03 324.36 21.27   0.00
## 1+3+4+8               6 -154.51 324.38 21.29   0.00
## 3+4+5+6+7+9+10        9 -149.13 324.43 21.34   0.00
## 1+2+3+6+7+9+10        9 -149.13 324.44 21.34   0.00
## 1+2+3+4+5+6+7+8+10   11 -144.63 324.46 21.36   0.00
## 5+6+7+8+10            7 -152.90 324.46 21.36   0.00
## 1+2+3+5+6+7+9         9 -149.14 324.47 21.37   0.00
## 1+2+3+5+9+10          8 -151.11 324.49 21.39   0.00
## 1+2+3+5+8+9+10        9 -149.16 324.49 21.40   0.00
## 1+3+4+5+6+7+9         9 -149.18 324.54 21.44   0.00
## 1+3+5+6+8+10          8 -151.15 324.56 21.46   0.00
## 6+7+8+9+10            7 -152.96 324.59 21.49   0.00
## 1+2+5+7+8+10          8 -151.17 324.59 21.50   0.00
## 1+2+7+8+9+10          8 -151.18 324.61 21.52   0.00
## 5+6+7+8               6 -154.65 324.67 21.57   0.00
## 3+4+5+7+8             7 -153.00 324.67 21.58   0.00
## 1+4+6+8+9+10          8 -151.21 324.67 21.58   0.00
## 4+6+7+9               6 -154.66 324.68 21.59   0.00
## 1+5+8+10              6 -154.69 324.73 21.64   0.00
## 3+5+7+8+10            7 -153.04 324.75 21.65   0.00
## 2+3+5+6+7+9+10        9 -149.29 324.76 21.66   0.00
## 2+5+6+7+8+10          8 -151.25 324.77 21.67   0.00
## 1+4+8+9+10            7 -153.07 324.81 21.71   0.00
## 1+3+7+8+10            7 -153.07 324.81 21.71   0.00
## 4+5+6+8+9+10          8 -151.28 324.82 21.73   0.00
## 1+3+4+7+8             7 -153.08 324.83 21.74   0.00
## 4+5+8+9+10            7 -153.12 324.90 21.80   0.00
## 1+2+6+7+8+10          8 -151.34 324.94 21.84   0.00
## 2+5+6+8               6 -154.81 324.97 21.88   0.00
## 1+3+4                 5 -156.36 325.03 21.93   0.00
## 3+4+7+8+10            7 -153.18 325.03 21.94   0.00
## 4+5+8+9               6 -154.85 325.06 21.96   0.00
## 1+3+5+6+7+8+9         9 -149.45 325.07 21.98   0.00
## 1+2+5+7+8+9           8 -151.41 325.08 21.98   0.00
## 1+4+8+9               6 -154.86 325.08 21.98   0.00
## 4+5+7+8+9             7 -153.21 325.09 21.99   0.00
## 1+4+7+8+9             7 -153.21 325.09 21.99   0.00
## 1+2+5+6+7+8           8 -151.45 325.17 22.07   0.00
## 1+3+4+5+6+8+9         9 -149.50 325.19 22.09   0.00
## 2+6+7+8+9+10          8 -151.46 325.19 22.10   0.00
## 1+3+4+5+6+7+10        9 -149.51 325.21 22.11   0.00
## 1+2+5+8+9+10          8 -151.48 325.23 22.13   0.00
## 1+2+3+5+6+7+10        9 -149.54 325.27 22.17   0.00
## 1+4+5+6+8+10          8 -151.52 325.30 22.20   0.00
## 4+5+7+8+10            7 -153.32 325.30 22.20   0.00
## 3+4+5+8+10            7 -153.33 325.33 22.23   0.00
## 2+6+8                 5 -156.51 325.34 22.24   0.00
## 4+6+7+10              6 -154.99 325.34 22.24   0.00
## 1+4+7+8+10            7 -153.34 325.35 22.26   0.00
## 1+3+4+8+10            7 -153.35 325.37 22.28   0.00
## 2+5+6+8+9+10          8 -151.58 325.42 22.32   0.00
## 3+8+9                 5 -156.56 325.44 22.34   0.00
## 1+3+5+7               6 -155.06 325.48 22.38   0.00
## 2+7                   4 -158.02 325.51 22.42   0.00
## 1+3+5+7+8             7 -153.46 325.59 22.49   0.00
## 1+3+4+7               6 -155.12 325.60 22.51   0.00
## 1+6+8+9+10            7 -153.47 325.61 22.52   0.00
## 1+2+3+5+7+8+10        9 -149.73 325.64 22.54   0.00
## 1+3+4+8+9             7 -153.51 325.68 22.59   0.00
## 4+5+6                 5 -156.69 325.68 22.59   0.00
## 1+2+6+8               6 -155.16 325.69 22.59   0.00
## 5+6+8+9+10            7 -153.52 325.70 22.60   0.00
## 1+3+5+8+10            7 -153.52 325.70 22.60   0.00
## 2+5+6+7+8+9           8 -151.73 325.72 22.63   0.00
## 1+4+5+8               6 -155.18 325.73 22.63   0.00
## 1+3+7+8+9+10          8 -151.74 325.74 22.64   0.00
## 1+5+6+8+10            7 -153.55 325.77 22.67   0.00
## 5+7+8+9+10            7 -153.57 325.81 22.71   0.00
## 3+4+5+8+9             7 -153.57 325.81 22.72   0.00
## 1+2+5+6+8+10          8 -151.78 325.81 22.72   0.00
## 1+7+8+9+10            7 -153.58 325.82 22.73   0.00
## 1+4+6                 5 -156.78 325.86 22.77   0.00
## 1+2+6+8+9+10          8 -151.83 325.92 22.83   0.00
## 4+6+10                5 -156.81 325.93 22.83   0.00
## 1+3+10                5 -156.81 325.93 22.83   0.00
## 1+2+3+5+6+8+10        9 -149.89 325.96 22.86   0.00
## 1+4+5+7+8             7 -153.65 325.96 22.87   0.00
## 1+3+6+8+9             7 -153.68 326.03 22.94   0.00
## 1+3+7+9               6 -155.34 326.04 22.95   0.00
## 1+2+6+7+8+9           8 -151.90 326.06 22.96   0.00
## 1+3+4+8+9+10          8 -151.90 326.07 22.97   0.00
## 1+7+8+9               6 -155.36 326.08 22.98   0.00
## 3+5+8                 5 -156.89 326.10 23.00   0.00
## 1+3+4+7+8+9           8 -151.92 326.11 23.01   0.00
## 1+3+4+5+6+8+10        9 -149.97 326.12 23.02   0.00
## 1+5+7+8               6 -155.39 326.14 23.05   0.00
## 1+3+5+6+7+8+10        9 -150.00 326.18 23.09   0.00
## 3+5+7+8+9+10          8 -151.96 326.19 23.09   0.00
## 1+4+5+8+10            7 -153.77 326.21 23.11   0.00
## 6+7+8+9               6 -155.44 326.23 23.14   0.00
## 1+3+5+6+8+9+10        9 -150.03 326.24 23.14   0.00
## 1+5+6+7+8             7 -153.79 326.24 23.14   0.00
## 3+5+6+8+9             7 -153.80 326.27 23.17   0.00
## 1+3+8                 5 -156.99 326.29 23.20   0.00
## 1+4+6+7               6 -155.47 326.30 23.21   0.00
## 1+3                   4 -158.41 326.30 23.21   0.00
## 5+7+8+9               6 -155.47 326.30 23.21   0.00
## 4+5+6+7               6 -155.48 326.31 23.22   0.00
## 3+4+5+7+8+9           8 -152.06 326.38 23.29   0.00
## 1+2+3+5+7+9+10        9 -150.12 326.41 23.32   0.00
## 1+3+7+10              6 -155.53 326.42 23.32   0.00
## 2+3+5+6+7+8+9+10     10 -147.97 326.42 23.32   0.00
## 1+2+3+6+7+8+9+10     10 -147.98 326.43 23.33   0.00
## 3+4+5+6+7+8+9+10     10 -147.98 326.43 23.33   0.00
## 1+3+4+6+7+8+9+10     10 -147.99 326.45 23.35   0.00
## 3+4+7+8+9+10          8 -152.10 326.47 23.37   0.00
## 1+2+8+9               6 -155.55 326.47 23.37   0.00
## 1+3+4+5+6+7+8+9      10 -148.00 326.49 23.39   0.00
## 1+4+5+6+8+9           8 -152.14 326.54 23.45   0.00
## 2+5+7+9               6 -155.59 326.55 23.45   0.00
## 1+3+5+8+9+10          8 -152.15 326.56 23.46   0.00
## 3+4+5+8+9+10          8 -152.17 326.60 23.50   0.00
## 1+5+7+8+10            7 -154.01 326.69 23.60   0.00
## 2+5+7                 5 -157.19 326.69 23.60   0.00
## 1+2+3+5+6+7+8+9      10 -148.12 326.71 23.62   0.00
## 1+2+3+5+6+8+9         9 -150.29 326.75 23.66   0.00
## 1+3+5+6+8             7 -154.05 326.78 23.68   0.00
## 1+3+5+6+9+10          8 -152.27 326.81 23.71   0.00
## 2+5+8+9               6 -155.76 326.89 23.79   0.00
## 1+6+7+8+9             7 -154.12 326.90 23.80   0.00
## 3+5+7                 5 -157.30 326.91 23.82   0.00
## 1+3+4+5+6+9+10        9 -150.38 326.93 23.84   0.00
## 1+3+4+5               6 -155.80 326.95 23.86   0.00
## 4+5+6+9               6 -155.80 326.96 23.86   0.00
## 1+2+5+6+8             7 -154.20 327.06 23.97   0.00
## 1+5+8+9+10            7 -154.21 327.09 23.99   0.00
## 1+2+3+5+6+9+10        9 -150.46 327.11 24.01   0.00
## 1+3+5+6+7+9+10        9 -150.47 327.12 24.02   0.00
## 1+4+6+9               6 -155.88 327.13 24.03   0.00
## 4+6+9+10              6 -155.89 327.13 24.04   0.00
## 1+3+4+5+8             7 -154.27 327.20 24.10   0.00
## 1+3+5+6+9             7 -154.28 327.23 24.14   0.00
## 1+4+6+7+8+9+10        9 -150.53 327.24 24.14   0.00
## 1+2+3+4+5+6+7+8+9+10 12 -143.44 327.31 24.21   0.00
## 1+4+5+6+7+8+9         9 -150.57 327.33 24.23   0.00
## 1+3+5+7+8+9           8 -152.53 327.33 24.23   0.00
## 4+6+7+9+10            7 -154.33 327.33 24.24   0.00
## 1+2+5+8+9             7 -154.33 327.34 24.24   0.00
## 1+6+7+8+9+10          8 -152.55 327.36 24.26   0.00
## 1+5+6+7+8+10          8 -152.55 327.37 24.27   0.00
## 1+2+7+9               6 -156.01 327.38 24.28   0.00
## 2+6+7+9               6 -156.03 327.41 24.32   0.00
## 2+7+9+10              6 -156.03 327.42 24.32   0.00
## 4+5+6+7+8+9+10        9 -150.65 327.48 24.38   0.00
## 5+6+7+8+9+10          8 -152.64 327.55 24.46   0.00
## 1+4+7+8+9+10          8 -152.65 327.56 24.46   0.00
## 1+3+4+10              6 -156.11 327.59 24.49   0.00
## 1+3+4+9               6 -156.13 327.62 24.52   0.00
## 4+5+7+8+9+10          8 -152.69 327.63 24.54   0.00
## 1+2+3+5+7+8+9+10     10 -148.59 327.65 24.56   0.00
## 1+4+5+6+7+8+10        9 -150.76 327.70 24.60   0.00
## 1+3+4+5+7             7 -154.53 327.73 24.63   0.00
## 4+5+6+7+9             7 -154.59 327.85 24.76   0.00
## 3+4+5+7+8+10          8 -152.80 327.86 24.77   0.00
## 1+2+5+7+8+9+10        9 -150.86 327.91 24.81   0.00
## 1+3+5+10              6 -156.28 327.91 24.81   0.00
## 1+3+4+5+7+8           8 -152.83 327.92 24.83   0.00
## 1+3+4+7+8+10          8 -152.84 327.94 24.85   0.00
## 5+6+7+8+9             7 -154.65 327.96 24.87   0.00
## 1+4+6+7+9             7 -154.66 327.99 24.90   0.00
## 1+3+5+7+8+10          8 -152.87 327.99 24.90   0.00
## 1+2+3+5+6+8+9+10     10 -148.77 328.02 24.92   0.00
## 2+9+10                5 -157.86 328.02 24.93   0.00
## 2+5+6+7+8+9+10        9 -150.95 328.09 24.99   0.00
## 1+3+4+5+6+8+9+10     10 -148.81 328.10 25.01   0.00
## 3+5                   4 -159.35 328.18 25.08   0.00
## 3+5+8+9               6 -156.43 328.22 25.12   0.00
## 1+2+5+6+7+8+10        9 -151.04 328.27 25.17   0.00
## 2+5+6+8+9             7 -154.80 328.27 25.18   0.00
## 2+6+7                 5 -157.99 328.28 25.18   0.00
## 4+5+6+7+10            7 -154.81 328.29 25.20   0.00
## 1+3+8+9               6 -156.47 328.31 25.21   0.00
## 2+6+8+9               6 -156.47 328.31 25.21   0.00
## 1+3+5+7+9             7 -154.83 328.32 25.22   0.00
## 1+2+7                 5 -158.01 328.34 25.24   0.00
## 2+7+10                5 -158.02 328.34 25.24   0.00
## 1+4+5+8+9             7 -154.85 328.36 25.27   0.00
## 1+3+4+7+9             7 -154.85 328.37 25.28   0.00
## 2+5+9                 5 -158.03 328.38 25.28   0.00
## 1+4+5+8+9+10          8 -153.06 328.38 25.28   0.00
## 3+4+5                 5 -158.05 328.41 25.31   0.00
## 1+3+5+6+7+8+9+10     10 -148.98 328.44 25.34   0.00
## 1+4+5+6+8+9+10        9 -151.13 328.44 25.35   0.00
## 1+2+3+5+6+7+8+10     10 -148.99 328.46 25.36   0.00
## 1+3+5                 5 -158.08 328.47 25.38   0.00
## 1+2+6+7+8+9+10        9 -151.16 328.50 25.40   0.00
## 1+3+4+5+8+10          8 -153.12 328.50 25.40   0.00
## 1+3+4+5+6+7+8+10     10 -149.04 328.55 25.46   0.00
## 1+3+4+5+6+7+9+10     10 -149.04 328.56 25.46   0.00
## 1+4+5+6               6 -156.61 328.57 25.48   0.00
## 1+3+9+10              6 -156.64 328.63 25.54   0.00
## 1+4+6+7+10            7 -154.99 328.64 25.55   0.00
## 1+4+5+7+8+9           8 -153.20 328.66 25.56   0.00
## 1+3+5+7+10            7 -155.01 328.68 25.59   0.00
## 4+5+6+10              6 -156.68 328.71 25.62   0.00
## 1+2+3+5+6+7+9+10     10 -149.13 328.73 25.63   0.00
## 1+3+4+5+8+9           8 -153.29 328.84 25.74   0.00
## 1+4+5+7+8+10          8 -153.29 328.84 25.75   0.00
## 1+5+6+8+9+10          8 -153.31 328.88 25.78   0.00
## 1+3+4+7+10            7 -155.11 328.88 25.78   0.00
## 1+4+6+10              6 -156.78 328.91 25.82   0.00
## 1+2+5+6+7+8+9         9 -151.37 328.93 25.83   0.00
## 1+2+6+8+9             7 -155.13 328.93 25.84   0.00
## 1+3+9                 5 -158.32 328.94 25.85   0.00
## 1+3+4+7+8+9+10        9 -151.46 329.10 26.01   0.00
## 1+3+5+8               6 -156.88 329.12 26.03   0.00
## 1+2+5+7               6 -156.88 329.13 26.03   0.00
## 1+2+5+6+8+9+10        9 -151.48 329.13 26.04   0.00
## 1+3+7+9+10            7 -155.31 329.29 26.19   0.00
## 1+5+7+8+9             7 -155.32 329.30 26.20   0.00
## 1+4+5+6+7             7 -155.32 329.31 26.21   0.00
## 1+3+5+7+8+9+10        9 -151.57 329.31 26.22   0.00
## 2+5+7+10              6 -157.02 329.40 26.30   0.00
## 1+5+7+8+9+10          8 -153.57 329.40 26.31   0.00
## 3                     3 -161.29 329.44 26.35   0.00
## 2+5+6+7+9             7 -155.44 329.54 26.45   0.00
## 2+5+6+7               6 -157.10 329.56 26.46   0.00
## 1+3+4+5+7+8+9         9 -151.70 329.58 26.48   0.00
## 3+4+5+7+8+9+10        9 -151.70 329.58 26.49   0.00
## 3+5+7+10              6 -157.11 329.58 26.49   0.00
## 1+3+4+5+8+9+10        9 -151.70 329.59 26.49   0.00
## 3+4+5+7               6 -157.12 329.59 26.50   0.00
## 1+3+5+6+8+9           8 -153.68 329.62 26.53   0.00
## 2+5+7+9+10            7 -155.50 329.67 26.57   0.00
## 1+3+4+5+10            7 -155.50 329.67 26.57   0.00
## 3+7                   4 -160.12 329.73 26.63   0.00
## 1+2+5+7+9             7 -155.54 329.74 26.64   0.00
## 1+3+4+5+9             7 -155.54 329.74 26.64   0.00
## 2+5+9+10              6 -157.22 329.81 26.71   0.00
## 1+5+6+7+8+9           8 -153.78 329.83 26.73   0.00
## 3+5+7+9               6 -157.25 329.86 26.77   0.00
## 3+5+10                5 -158.89 330.09 26.99   0.00
## 4+5+6+9+10            7 -155.79 330.26 27.16   0.00
## 1+4+5+6+9             7 -155.80 330.26 27.17   0.00
## 1+2+9                 5 -159.01 330.32 27.23   0.00
## 1+3+4+9+10            7 -155.87 330.41 27.32   0.00
## 1+4+6+9+10            7 -155.88 330.42 27.33   0.00
## 2+5                   4 -160.47 330.42 27.33   0.00
## 2+6+9                 5 -159.08 330.47 27.37   0.00
## 1+2+6+7+9             7 -155.98 330.63 27.53   0.00
## 1+2+5+6+8+9           8 -154.20 330.65 27.56   0.00
## 4+5+6+7+9+10          8 -154.20 330.66 27.57   0.00
## 1+2+7+9+10            7 -156.00 330.66 27.57   0.00
## 3+7+10                5 -159.18 330.68 27.58   0.00
## 1+3+4+5+7+9           8 -154.23 330.71 27.62   0.00
## 2+6+7+9+10            7 -156.03 330.72 27.62   0.00
## 1+4+6+7+9+10          8 -154.27 330.81 27.71   0.00
## 1+3+5+9+10            7 -156.08 330.82 27.73   0.00
## 3+5+9                 5 -159.31 330.92 27.83   0.00
## 1+5+6+7+8+9+10        9 -152.37 330.92 27.83   0.00
## 6+7+9                 5 -159.32 330.95 27.85   0.00
## 1+4                   4 -160.76 331.00 27.91   0.00
## 2+6+9+10              6 -157.82 331.01 27.91   0.00
## 1+2+9+10              6 -157.83 331.03 27.93   0.00
## 2+10                  4 -160.81 331.10 28.00   0.00
## 2+5+6+9               6 -157.87 331.10 28.01   0.00
## 1+4+7                 5 -159.40 331.11 28.01   0.00
## 1+2+5+9               6 -157.88 331.12 28.03   0.00
## 1+2+3+5+6+7+8+9+10   11 -147.96 331.13 28.03   0.00
## 1+3+4+5+6+7+8+9+10   11 -147.98 331.15 28.06   0.00
## 3+4                   4 -160.84 331.16 28.06   0.00
## 1+2+6+7               6 -157.95 331.25 28.16   0.00
## 2+5+10                5 -159.48 331.26 28.16   0.00
## 1+3+4+5+7+10          8 -154.52 331.31 28.21   0.00
## 2+6+7+10              6 -157.98 331.31 28.22   0.00
## 1+3+5+9               6 -157.98 331.32 28.23   0.00
## 3+9                   4 -160.94 331.35 28.26   0.00
## 1+4+5+6+7+8+9+10     10 -150.44 331.36 28.27   0.00
## 3+4+5+9               6 -158.00 331.36 28.27   0.00
## 1+3+4+5+7+8+10        9 -152.60 331.37 28.28   0.00
## 1+2+7+10              6 -158.01 331.39 28.29   0.00
## 1+3+5+8+9             7 -156.38 331.43 28.34   0.00
## 1+4+5+6+7+9           8 -154.59 331.44 28.34   0.00
## 3+4+5+10              6 -158.04 331.45 28.35   0.00
## 1+4+5+7+8+9+10        9 -152.64 331.46 28.36   0.00
## 3+7+9                 5 -159.65 331.61 28.51   0.00
## 1+3+5+7+9+10          8 -154.77 331.79 28.70   0.00
## 1+4+5+6+7+10          8 -154.81 331.88 28.78   0.00
## 1+4+5+6+10            7 -156.61 331.88 28.78   0.00
## 3+4+5+7+10            7 -156.63 331.92 28.82   0.00
## 1+3+4+7+9+10          8 -154.84 331.94 28.84   0.00
## 3+10                  4 -161.29 332.05 28.96   0.00
## 1+2+5+6+7+8+9+10     10 -150.80 332.08 28.99   0.00
## 2+9                   4 -161.35 332.18 29.08   0.00
## 1+4+9                 5 -159.99 332.29 29.20   0.00
## 1+2+5+7+10            7 -156.85 332.37 29.28   0.00
## 1+2+5+6+7             7 -156.88 332.43 29.34   0.00
## 2+5+6                 5 -160.08 332.46 29.36   0.00
## 3+4+7                 5 -160.12 332.54 29.45   0.00
## 2+5+6+7+10            7 -156.98 332.64 29.54   0.00
## 1+3+4+5+9+10          8 -155.23 332.72 29.62   0.00
## 3+4+5+7+9             7 -157.06 332.79 29.70   0.00
## 1+4+7+9               6 -158.72 332.80 29.70   0.00
## 3+5+7+9+10            7 -157.08 332.84 29.74   0.00
## 1+2+6+9               6 -158.78 332.92 29.82   0.00
## 1+3+4+5+7+8+9+10     10 -151.25 332.97 29.88   0.00
## 3+5+9+10              6 -158.81 332.97 29.88   0.00
## 3+4+7+10              6 -158.82 333.01 29.91   0.00
## 5+6+7+9               6 -158.84 333.04 29.95   0.00
## 2+5+6+7+9+10          8 -155.40 333.06 29.97   0.00
## 1+2+5+9+10            7 -157.20 333.06 29.97   0.00
## 2+5+6+9+10            7 -157.21 333.10 30.00   0.00
## 3+4+9                 5 -160.40 333.10 30.00   0.00
## 1+2+5+6+7+9           8 -155.44 333.13 30.04   0.00
## 1+2+5                 5 -160.46 333.22 30.13   0.00
## 1+2+5+7+9+10          8 -155.49 333.24 30.14   0.00
## 3+7+9+10              6 -158.96 333.28 30.18   0.00
## 2+6                   4 -161.91 333.31 30.21   0.00
## 2+6+10                5 -160.52 333.35 30.26   0.00
## 3+4+10                5 -160.58 333.46 30.37   0.00
## 1+6+7+9               6 -159.08 333.52 30.43   0.00
## 6+7+9+10              6 -159.08 333.53 30.43   0.00
## 4+9                   4 -162.05 333.59 30.49   0.00
## 1+4+10                5 -160.70 333.70 30.60   0.00
## 1+2+5+10              6 -159.19 333.74 30.64   0.00
## 1+4+7+10              6 -159.21 333.78 30.68   0.00
## 1+4+5                 5 -160.74 333.79 30.69   0.00
## 1+8                   4 -162.17 333.83 30.73   0.00
## 7+9                   4 -162.18 333.84 30.74   0.00
## 1+4+5+6+9+10          8 -155.79 333.85 30.75   0.00
## 1+2+10                5 -160.79 333.89 30.80   0.00
## 3+9+10                5 -160.89 334.08 30.99   0.00
## 1+4+5+7               6 -159.37 334.10 31.01   0.00
## 2+8+9                 5 -160.93 334.17 31.08   0.00
## 1+2+6+7+9+10          8 -155.97 334.21 31.11   0.00
## 2+5+6+10              6 -159.46 334.29 31.19   0.00
## 1+2+6+9+10            7 -157.82 334.30 31.21   0.00
## 1+2+5+6+9             7 -157.84 334.35 31.25   0.00
## 1+4+5+6+7+9+10        9 -154.18 334.53 31.44   0.00
## 1+2+6+7+10            7 -157.95 334.56 31.46   0.00
## 1+3+4+5+7+9+10        9 -154.22 334.62 31.53   0.00
## 4+5+9                 5 -161.16 334.63 31.54   0.00
## 3+4+7+9               6 -159.64 334.64 31.54   0.00
## 4+7+9                 5 -161.18 334.66 31.56   0.00
## 3+4+5+9+10            7 -158.00 334.67 31.57   0.00
## 1+4+9+10              6 -159.90 335.17 32.07   0.00
## 1+7+9                 5 -161.43 335.18 32.08   0.00
## 1+4+5+9               6 -159.92 335.21 32.11   0.00
## 1+2+5+6               6 -159.98 335.32 32.22   0.00
## 3+4+5+7+9+10          8 -156.61 335.49 32.39   0.00
## 1+5+8                 5 -161.60 335.50 32.41   0.00
## 6+7                   4 -163.07 335.63 32.53   0.00
## 4+5+7+9               6 -160.14 335.64 32.55   0.00
## 4                     3 -164.47 335.79 32.70   0.00
## 1+4+7+9+10            7 -158.59 335.84 32.74   0.00
## 3+4+9+10              6 -160.25 335.87 32.77   0.00
## 1+8+9                 5 -161.78 335.87 32.78   0.00
## 4+7+9+10              6 -160.26 335.89 32.79   0.00
## 3+4+7+9+10            7 -158.63 335.93 32.83   0.00
## 1+4+5+7+9             7 -158.64 335.95 32.85   0.00
## 1+2+5+6+7+10          8 -156.85 335.97 32.87   0.00
## 1+2+6+10              6 -160.33 336.03 32.93   0.00
## 4+7+10                5 -161.87 336.06 32.96   0.00
## 1+2+6                 5 -161.91 336.12 33.02   0.00
## 5+6+7+9+10            7 -158.73 336.13 33.03   0.00
## 4+5                   4 -163.33 336.14 33.04   0.00
## 1+6+8                 5 -161.92 336.15 33.06   0.00
## 1+5+6+7+9             7 -158.76 336.18 33.08   0.00
## 5+8                   4 -163.37 336.22 33.13   0.00
## 5+7+9                 5 -161.96 336.23 33.13   0.00
## 4+9+10                5 -161.96 336.23 33.14   0.00
## 6+9+10                5 -161.97 336.24 33.14   0.00
## 7+9+10                5 -162.13 336.56 33.47   0.00
## 1+6+7+9+10            7 -158.99 336.64 33.55   0.00
## 1+2+5+6+9+10          8 -157.20 336.66 33.56   0.00
## 4+7                   4 -163.59 336.67 33.57   0.00
## 5+6+7                 5 -162.20 336.70 33.61   0.00
## 1+4+5+10              6 -160.67 336.70 33.61   0.00
## 1+2                   4 -163.64 336.76 33.66   0.00
## 2+8                   4 -163.65 336.78 33.68   0.00
## 1+2+5+6+10            7 -159.07 336.81 33.71   0.00
## 4+5+7                 5 -162.30 336.90 33.80   0.00
## 1+2+5+6+7+9+10        9 -155.40 336.98 33.89   0.00
## 1+4+5+7+10            7 -159.18 337.03 33.94   0.00
## 1+5+6+8               6 -160.88 337.12 34.02   0.00
## 4+10                  4 -164.08 337.64 34.54   0.00
## 4+5+7+10              6 -161.14 337.64 34.54   0.00
## 4+5+9+10              6 -161.16 337.67 34.57   0.00
## 4+5+7+9+10            7 -159.58 337.83 34.73   0.00
## 1+6+8+9               6 -161.27 337.90 34.81   0.00
## 6+7+10                5 -162.86 338.02 34.92   0.00
## 1+7+9+10              6 -161.33 338.03 34.93   0.00
## 1+5+8+9               6 -161.42 338.19 35.10   0.00
## 1+5+7+9               6 -161.43 338.22 35.12   0.00
## 5+8+9                 5 -162.97 338.24 35.15   0.00
## 1+4+5+9+10            7 -159.83 338.32 35.23   0.00
## 1+6+7                 5 -163.07 338.46 35.36   0.00
## 4+5+10                5 -163.18 338.67 35.58   0.00
## 5+6+9+10              6 -161.66 338.68 35.59   0.00
## 1+7                   4 -164.61 338.70 35.60   0.00
## 9+10                  4 -164.76 339.00 35.91   0.00
## 5+6+8                 5 -163.37 339.05 35.95   0.00
## 1+6+9+10              6 -161.95 339.27 36.17   0.00
## 5+7+9+10              6 -161.96 339.28 36.19   0.00
## 1+4+5+7+9+10          8 -158.51 339.29 36.19   0.00
## 7                     3 -166.23 339.31 36.21   0.00
## 1+5+6+7               6 -162.12 339.60 36.50   0.00
## 5+6+7+10              6 -162.13 339.63 36.53   0.00
## 1+5+6+8+9             7 -160.50 339.66 36.56   0.00
## 1+5+6+7+9+10          8 -158.70 339.66 36.57   0.00
## 1+9+10                5 -163.78 339.86 36.77   0.00
## 2                     3 -166.97 340.80 37.70   0.00
## 1+6+7+10              6 -162.80 340.95 37.85   0.00
## 1+7+10                5 -164.34 340.98 37.89   0.00
## 1+5+7                 5 -164.35 341.00 37.91   0.00
## 5+6+8+9               6 -162.93 341.22 38.12   0.00
## 1+5+7+9+10            7 -161.33 341.33 38.23   0.00
## 5+9+10                5 -164.60 341.50 38.40   0.00
## 8+9                   4 -166.01 341.51 38.41   0.00
## 5+7                   4 -166.13 341.75 38.65   0.00
## 7+10                  4 -166.15 341.78 38.69   0.00
## 6+8                   4 -166.25 341.97 38.88   0.00
## 1+5+6+9+10            7 -161.66 341.99 38.89   0.00
## 1+5+6+7+10            7 -161.96 342.60 39.50   0.00
## 6+8+9                 5 -165.20 342.70 39.60   0.00
## 1+5+9+10              6 -163.77 342.90 39.80   0.00
## 9                     3 -168.35 343.55 40.45   0.00
## 1+5+7+10              6 -164.14 343.64 40.54   0.00
## 5+7+10                5 -166.11 344.52 41.42   0.00
## 5+9                   4 -167.62 344.73 41.63   0.00
## 8                     3 -169.05 344.95 41.85   0.00
## 1+9                   4 -167.83 345.14 42.04   0.00
## 1+6+9                 5 -166.44 345.19 42.09   0.00
## 6+10                  4 -167.93 345.33 42.24   0.00
## 5+6+9                 5 -166.54 345.39 42.30   0.00
## 6+9                   4 -168.33 346.14 43.04   0.00
## 1+10                  4 -168.41 346.29 43.20   0.00
## 5+6+10                5 -167.14 346.59 43.49   0.00
## 1+5+6+9               6 -165.63 346.61 43.52   0.00
## 1+6+10                5 -167.49 347.29 44.19   0.00
## 1+5+9                 5 -167.60 347.50 44.41   0.00
## 1+5+6+10              6 -166.45 348.26 45.16   0.00
## 1+5+10                5 -168.00 348.31 45.21   0.00
## 10                    3 -171.08 349.02 45.92   0.00
## 5+10                  4 -171.06 351.59 48.50   0.00
## 5+6                   4 -175.13 359.75 56.65   0.00
## 5                     3 -176.59 360.03 56.94   0.00
## 1+5                   4 -176.35 362.18 59.08   0.00
## 1+5+6                 5 -175.06 362.43 59.34   0.00
## (Null)                2 -180.19 364.79 61.69   0.00
## 1                     3 -179.21 365.28 62.18   0.00
## 6                     3 -179.93 366.72 63.62   0.00
## 1+6                   4 -179.00 367.48 64.39   0.00
## 
## Term codes: 
##   am carb  cyl disp drat gear  kml qsec   vs   wt 
##    1    2    3    4    5    6    7    8    9   10 
## 
## Model-averaged coefficients:  
## (full average) 
##             Estimate Std. Error Adjusted SE z value Pr(>|z|)    
## (Intercept)  70.8539    98.1389    100.4683   0.705 0.480663    
## carb         21.4717     5.4456      5.5937   3.839 0.000124 ***
## disp          0.4453     0.1401      0.1432   3.109 0.001875 ** 
## wt          -20.6451    16.9931     17.3080   1.193 0.232944    
## vs            4.9071    12.3728     12.6790   0.387 0.698736    
## cyl           1.8423     5.4948      5.6138   0.328 0.742784    
## drat         -1.2146     6.7301      6.9936   0.174 0.862127    
## qsec         -2.1062     4.6592      4.7408   0.444 0.656841    
## kml           0.1869     1.4603      1.5156   0.123 0.901832    
## am            0.5697     7.5870      7.8770   0.072 0.942342    
## gear          1.3335     6.8393      7.0322   0.190 0.849599    
##  
## (conditional average) 
##             Estimate Std. Error Adjusted SE z value Pr(>|z|)    
## (Intercept)  70.8539    98.1389    100.4683   0.705 0.480663    
## carb         21.6289     5.1451      5.3027   4.079 4.53e-05 ***
## disp          0.4508     0.1318      0.1352   3.334 0.000855 ***
## wt          -28.6308    13.1083     13.6677   2.095 0.036190 *  
## vs           17.9458    18.0517     18.8126   0.954 0.340123    
## cyl           7.5820     8.9855      9.2835   0.817 0.414090    
## drat         -6.5756    14.4903     15.1510   0.434 0.664283    
## qsec         -6.5823     6.1951      6.3856   1.031 0.302633    
## kml           1.0361     3.3075      3.4425   0.301 0.763436    
## am            3.2174    17.7921     18.4899   0.174 0.861860    
## gear          6.9068    14.2750     14.7525   0.468 0.639659    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# adäquatest model gemäss multimodel inference
model_ad <- lm(hp ~ carb + disp + wt, data = mtcars)
summary(model_ad)
## 
## Call:
## lm(formula = hp ~ carb + disp + wt, data = mtcars)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -45.225 -14.235   3.879  20.621  39.785 
## 
## Coefficients:
##              Estimate Std. Error t value Pr(>|t|)    
## (Intercept)  53.16715   18.16036   2.928  0.00671 ** 
## carb         23.57691    2.99391   7.875 1.41e-08 ***
## disp          0.51663    0.07669   6.736 2.59e-07 ***
## wt          -28.59214    9.87292  -2.896  0.00725 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 24.32 on 28 degrees of freedom
## Multiple R-squared:  0.8863, Adjusted R-squared:  0.8742 
## F-statistic: 72.78 on 3 and 28 DF,  p-value: 2.462e-13